## What is the quotient in simplified form? State any restrictions on the variable? \frac{x^2-16}{x^2+5x+6} /\frac{x^2+5x+4}{x^2-2x-8}

Question

What is the quotient in simplified form? State any restrictions on the variable? \frac{x^2-16}{x^2+5x+6} /\frac{x^2+5x+4}{x^2-2x-8}

in progress 0

Full…Solving Rational Equations Quiz part 1.

1.c. n^2-6/n^2-2 ; n = +/- sqrt5, n= +/- sqrt2

2.B. 4a/7b^2 , a = 0, b = 0

3.C. (x-4)^2/(x+3)(x+1) ; x= -4,-3,-2,-1,4

4.B. (x+1)(x-1)(x^2+1)

5.A. 7a-49/(a-8)(a+8)

6.A. 21a-28/(A-6)(a+8)

7.C. 4x/3x^2+10x+3

8.C. 3x^2(y+4)/7y

9.D. -11/3

10.D. 14

11. D. 9 mi/h downstream, 6 mi/h upstream

Step-by-step explanation:

You’re welcome ðŸ™‚

2. $$frac{x^2-16}{x^2+5x+6} / frac{x^2+5x+4}{x^2-2x-8}$$

We can begin by rearranging this into multiplication:

$$frac{x^2-16}{x^2+5x+6} * frac{x^2-2x-8}{x^2+5x+4}$$

Now we can factor the numerators and denominators:

$$frac{(x+4)(x-4)}{(x+3)(x+2)} * frac{(x-4)(x+2)}{(x+4)(x+1)}$$

The factors (x+4) and (x+2) cancel out, leaving us with:

$$frac{(x-4)}{(x+3)} * frac{(x-4)}{(x+1)}$$

Our answer comes out to be:

$$frac{(x-4)^{2} }{(x+3)(x+1)}$$or $$frac{ x^{2} -8x+16}{ x^{2}+4x+3 }$$

Based on the numerator of the secondfraction (since we used its inverse), the denominators of both, and the factors we canceled out earlier, the restrictions are x u2260 -4, -3, -2, -1, 4