What is 3log2 x-(log2 3-log2(x+4)) written as a single logarithm? Question What is 3log2 x-(log2 3-log2(x+4)) written as a single logarithm? in progress 0 All 1 month 2022-04-09T22:47:59+00:00 2022-04-09T22:47:59+00:00 2 Answers 0

## Answers ( 2 )

Answer:logu2082([tex] frac{x^2(x+4)}{3} [/tex])

Explanation:Before we begin, remember the following:logu2090(x) – logu2090(y) = logu2090([tex] frac{x}{y} [/tex])

alog(x) = log(xu1d43)

Now, for the given we have:3 logu2082(x) – (logu20823 – logu2082(x+4))

logu2082(xu00b2) – logu2082([tex] frac{3}{x+4} [/tex])

logu2082([tex] frac{x^2}{ frac{3}{x+4} } [/tex]) = logu2082([tex] frac{x^2(x+4)}{3} [/tex])

Hope this helps ðŸ™‚

Answer:the answer is c on edge

Step-by-step explanation:it’s the closest one so

log2 (x^3/3)/x+4

which is c