What is 3log2 x-(log2 3-log2(x+4)) written as a single logarithm?

Question

What is 3log2 x-(log2 3-log2(x+4)) written as a single logarithm?

in progress 0
2022-04-09T22:47:59+00:00 2 Answers 0

Answers ( 2 )

  1. Morgan
    0
    2022-04-09T22:49:10+00:00

    Answer:
    logu2082([tex] frac{x^2(x+4)}{3} [/tex])

    Explanation:
    Before we begin, remember the following:
    logu2090(x) – logu2090(y) = logu2090([tex] frac{x}{y} [/tex])
    alog(x) = log(xu1d43)

    Now, for the given we have:
    3 logu2082(x) – (logu20823 – logu2082(x+4))
    logu2082(xu00b2) – logu2082([tex] frac{3}{x+4} [/tex])

    logu2082([tex] frac{x^2}{ frac{3}{x+4} } [/tex]) = logu2082([tex] frac{x^2(x+4)}{3} [/tex])

    Hope this helps 🙂

  2. Eva
    0
    2022-04-09T22:49:43+00:00

    Answer:

    the answer is c on edge

    Step-by-step explanation:

    it’s the closest one so

    log2 (x^3/3)/x+4

    which is c

Leave an answer

Browse
Browse

45:5+15*4 = ? ( )